Empirical Quantitative Correlation of Substituent Size with Proton Nuclear Magnetic Resonance Chemical Shift Difference between Nonequivalent Geminal Methylene Protons of Hindered N-Substituted Acetanilides and Difluorooxyboranes

Benjamin Staskun

Department of Chemistry, Uniuersity of the Witwatersrand, Johannesburg, South Africa

Received July *15,* 1980

In N-ethyl- and N-benzyl-substituted difluorooxyboranes nonequivalence of the geminal methylene protons is exhibited in the ¹H NMR (CDCl₃) when the neighboring ortho X substituent on the arylamido moiety is sufficiently large. The observed chemical shift difference ($\Delta \delta_{AB}$) correlates quantitatively with the van der Waals radius (or a specially assigned "effective radius", r_X) of the X substituent, and the linear relationship $(\Delta \delta_{AB}$ = $ar_{\rm X}$ + b) is rationalized in terms of a preferred conformation for the difluorooxyborane. The correlation also extends to the hindered N-substituted acetanilides.

The chemical shift difference $(\Delta \delta_{AB})$ between nonequivalent methylene protons in hindered amides such **as** 1-3 has been investigated extensively,¹⁻⁴ and the subject has been reviewed.⁵⁻⁷ Siddall² has observed that the degree of nonequivalence of the methylene protons for the N-ethyl derivatives is evidently very much a function of size of the groups R_1 and X: increasing the sizes of these moieties increases the value of $\Delta \delta_{AB}$ almost without exception. We have now found, from study with a series of hindered N -benzyl (5) and N -ethyl (6) difluorooxyboranes (Table I), a simple, empirical expression which correlates $\Delta \delta_{AB}$ quantitatively with the size of the substituent X in 5 and **6** and in the aforementioned amides.

a, $X = 3', 5'$ -diCH₃; **b**, $X = 3'$ -Cl; **c**, $X = 2'$ -CH₃, **d**, $X = 2'$ - C_2H_5 ; **e**, $X = 2'$ -CH₃O; **f**, $X = 2'$ -F; **g**, $X = 2'$ -Cl; **h**, $X = 2'$ -Br; **i**, $X = 2' - C_6H_5$, **j**, $X = 4' - Br$, $2' - \overline{Cl}$, $3', 5' - \text{di}CH_3$

In the 'H NMR spectra of the hindered 5, the benzylic protons were exhibited as a typical AB quartet, while in the analogous 6, the methylene protons formed a symmetrical multiplet, consisting of two sets of six lines constituting the AB part of an apparent ABX_3 system with overlap of some signals. For purposes of comparison, the meta-substituted $\bar{5a}$ (X = 3', $\bar{5}'$ -diCH₃) and $\bar{5b}$ (X = 3'-Cl) showed no detectable barrier to rotation $(\Delta \delta_{AB} = 0)$ and neither did the N-methyl group in **7** (Table 11). The respective $\Delta \delta_{AB}$ magnitudes in 5 and 6 were clearly a function of both the size and the nature of the corresponding X substituent. Thus, in 5, the $\Delta \delta_{AB}$ values, in the main, followed the intuitive ordering in size of X, increasing in the sequence $\text{F} < \text{OCH}_3 < \text{CI} < \text{Br} < \text{C}_6\text{H}_5$, with the notable exceptions in this trend of the $CH₃$ and C_2H_5 groups (Table II). In the N-ethyl derivatives 6 , however, $\Delta \delta_{AB}$ varied as expected² in all instances (Table 11).

The apparent discontinuities in the trend of $\Delta \delta_{AB}$ observations in **5** disappear on taking cognisance of two types of X substituent and R-X interactions. Thus, " α "-type X substituents, specifically alkyl groups, interact with **all** R (C_2H_5 , $C_6H_5CH_2$) in a conventional "steric" manner, while " β "-type groups, i.e., those possessing lone pair(s) and/or π electrons (such as halogen, phenyl, methoxy), experience, in addition, a superimposed "electronic" repulsion from a similarly endowed R $(C_6H_5CH_2$ in 5).⁸ In consequence, the $\Delta \delta_{AB}$, which is a function of substituent "size" (vide infra), is greater, in, for example, $5g$ $(X = Cl)$ than in 5c $(X = CH_3)$, despite the Cl atom being the "smaller" substituent.

A simple linear regression analysis of the observed $\Delta \delta_{AB}$ with the size (r_X) of the X substituent in the two series **5** and 6 revealed that the variables were correlated satisfactorily by the relationship shown in eq 1.

$$
\Delta \delta_{AB} = ar_X + b \tag{1}
$$

In eq 1, the r_X of simple X (F, Cl, Br, I, CH₃) is measured by the van der Waals radius **(A)** and that **of** more complex **X** (such as C_2H_5 and C_6H_5) by an assigned "effective radius" which was selected to give the best overall agreement with the experimental data (Table 11); *a* and *b* are constants for a particular amide series. The experimental $\Delta\delta_{AB}$ values and those calculated from eq 1 are compared in Table I1 and the correspondence is surprisingly good, considering that no provision is made for other factors⁹ which affect the magnitude of geminal nonequivalence.

Equation 1 and other findings with **5** and 6 may be rationalized in terms of a preferred conformation for these compounds shown (Figure 1) with greater stereochemical

~ ~~~~~ ~~~

⁽¹⁾ T. **H.** Siddall, 111, and C. A. Prohaska, J. Am. Chem. SOC., **88,1172 (1966).**

⁽²⁾ T. **H.** Siddall, 111, *J. Org. Chem.,* **31, 3719 (1966).** (3) T. H. Siddall, 111, and W. E. Stewart, *J.* Org. Chem., **34, 2927**

⁽⁴⁾ Y. Shvo, E. C. Taylor, K. Mislow, and M. Rabin, J. Am. Chem. **(1969).**

SOC., **89, 4910 (1967).**

⁽⁵⁾ W. E. Stewart and T. H. Siddall, III, Chem. Rev., 70, 517 (1970).
(6) I. O. Sutherland, Annu. Rep. NMR Spectrosc., 4, 200 (1971).
(7) T. H. Siddall, III and W. E. Stewart, Prog. NMR Spectrosc., 5, 33

^{(1969).}

⁽⁸⁾ Siddall and Prohaska' have noted a similar distinction between steric and electronic effects for the pronounced interaction of the **N**substituent with the CO group in certain amides. **(9) W. B.** Jennings, Chem. *Reo.,* **75, 307 (1975).**

Table I. Analytical Data of Difluorooxyboranes 5,6,7,9, and 10

			anal.							
			calcd			found				
compd	mp, °C	molecular formula	C	н	N	$\mathbf C$	Η	N		
5b	155-157	$C_{22}H_{12}BCIF_2NO_2$	64.19	4.16	3.40	64.39	4.19	3.37		
5c	129-130	$C_{23}H_{20}BF_2NO_2$	70.61	5.15	3.58	70.66	5.30	3.63		
5d	160-161	$C_{24}H_{22}BF_2NO_2$	71.13	5.47	3.46	71.17	5.60	3.59		
5e	156-157	$C_{23}H_{20}BF_{2}NO_{3}$	67.84	4.95	3.44	67.38	4.78	3.25		
5f	172-173	$C_{22}H_1$, BF ₃ NO ₂	66.86	4.34	3.55	66.53	4.29	3.49		
5g	132-133	$C_{22}H_1$, BCIF ₂ NO ₂	64.19	4.16	3.40	64.53	4.27	3.35		
5 _h	156-157	$C_{22}H_{12}BBrF_2NO_2$	57.93	3.76	3.07	57.77	3.87	3.00		
5i	151-153	$C_{28}H_{22}BF_2NO_2$	74.19	4.89	3.09	74.41	4.57	2.87		
6c	165-166	C_{18} H ₁₈ BF ₂ NO ₂	65.68	5.51	4.26	65.81	5.67	4.15		
6e	120-121	$C_{18}H_{18}$ BF ₂ NO ₃	62.64	5.26	4.06	62.61	5.16	4.08		
6f	155-156	C_1 ₇ H ₁₅ BF ₃ NO ₂	61.29	4.54	4.21	61.47	4.62	3.87		
6g	129	C_1 , H_1 , BCIF, NO ₂	58.41	4.33	4.01	58.36	4.36	4.13		
6h	133-134	C, H, BBrF, NO,	51.82	3.84	3.56	52.12	3.83	3.57		
6i	162-163	$C_{2,3}H_{20}$ BF ₂ NO ₂	70.61	5.15	3.58	70.37	4.95	3.71		
7g	151	$C_{16}H_{13}BClF_2NO_2$	57.27	3.90	4.18	57,58	4.36	4.12		
7i	185	$C_{22}H_{18}$ BF ₂ NO ₂	70.05	4.81	3.71	70.28	4.79	3.36		
9	184-185	$C_{26}H_{20}BF_{2}NO_{2}$	73.09	4.72	3.28	73.55	4.62	3.36		
10	177-178	$C_{21}H_{18}BF_2NO_2$	69.07	4.97	3.84	69.52	4.86	3.95		

Figure 1. Lowest energy (preferred) conformation for hindered **5** and **6.**

explicitness than was feasible for the related conformer of $4j$.¹⁰ Specifically, whereas the relative atomic dispositions in the flexible $C_6H_5COCCl_2$ appendage in 4j were a matter of conjecture that of the difluorooxyborane cycle, which incorporates the corresponding (albeit modified) C chain in *5* and **6,** can be more easily discerned and specified.

Figure 1 shows an exo (coordinated) amide CO group¹⁰ and features the plane of the benzene ring approximately perpendicular to that of the difluorooxyborane cycle and with the substituents R and X suitably staggered for minimal interactions.¹¹ In support of and explicable in terms of the preferred conformer, the 'H **NMR** of hindered **5** showed a one-proton aromatic absorption near δ 6.7-6.8 (absent in **6** and **7),** attributed to shielding of the 6'-proton by the proximate benzyl group. In Figure 1, the methylene protons, H_A and H_B , reside in disparate magnetic environments, and this is reflected in the ¹H NMR by the $\Delta \delta_{AB}$ exhibited in the hindered *5* and **6.** Moreover, a consequence of coordination of the CO group in the latter structures is reduced deshielding of the H_A proton, leading to the expectation of a smaller $\Delta \delta_{AB}$ than that in the parent benzoylacetanilides.

The proportion of preferred conformer (Figure 1) in the conformer population (i.e., ρ) is expected to increase with the size of either or both R and \dot{X} . A simplistic rationalization of eq 1 supposes that *p* varies directly with the

"extent of steric hindrance" between R and **X** in *5* and **6** and that a measure of the latter is the difference between the combined "size" of X and R (i.e., $r_X + r_R$) and a magnitude, r_H , pertaining to incipient hindrance in the molecule.¹² Accordingly, $\rho \propto [(r_X + r_R) - r_H]$. Another assumption is that the less favored conformers in the population make **hardly** any contribution to the magnitude of $\Delta\delta_{AB}$ in 5 and 6, perhaps because of intrinsic factors and/or owing to fortuitous cancellation of opposing effects. This permits ρ to be equated with the observed $\Delta \delta_{AB}^9$ and leads to $\Delta \delta_{AB} \propto [r_X - (r_H - r_R)]$. The value of r_H is determined by the spacial interrelationships of the various groups around the N atom and is expected to remain more or less the same in a particular series having specific N substituents, **as** in *5.* Thus, with the proviso that the term substitutions, as in 5. Thus, with the proviso that the term $(r_H - r_R)$ is invariant in a series, and introduction of an appropriate proportionality factor (fortuitously \approx 1),¹³ $\Delta \delta_{AB}$ is seen to vary with r_X as in eq 1.

This simplistic derivation, in the absence of a more rigorous treatment, was useful in helping to coordinate a number of diverse concepts and observations. In particular, since the relative spatial orientations of the benzene ring bearing X, the amide group, and the methylene protons in Figure 1 are similar to those in the model proposed² for amides such **as 3,** it was expected that eq 1 would be valid also for the latter compounds. Gratifyingly, good linear correlations were confirmed by simple regression analysis in the series of amides **1-3,** and the results are collected in Table 111.

Application of eq 1 offers a means of estimating the size of a substituent appropriate to steric hindrance in amides as opposed to an "A" value which pertains to the cyclohexane system. For example, the I atom (2.15 **A)** is significantly "bigger" than C1 (1.80 **A)** in the present cir-

⁽¹⁰⁾ B. Staskun, *J. Org. Chem.,* **45, 2482 (1980).** (11) The postulated relative spatial orientations depicted in Figure **1, as** well **as** the individual B (sp3) and N (spz) hybridizations, are supported from a subsequent X-ray structure determination of the related difluorooxyborane from **N-ethyl-2'-chloroferrocenoylacetanilide** and **BF3** (J. S. Field, private communication).

⁽¹²⁾ This "extent of steric hindrance" is clearly analogous to the "interference value" in hindered biphenyls [R. Adams and H. C. Yuan, *Chem. Rev.,* 12, 285 (1933)].
(13) Values of $\Delta \delta_{AB}$ approximating closely those derived from eq 1 are

generated from the simplified expression $\Delta \delta_{AB} = r_X - c$ (c = 0.65 for 5; 1.31 for **6;** 0.79 for **1; 1.14** for **2;** 1.15 for **3).** In this latter equation, the 1.31 for 6; 0.79 for 1; 1.14 for 2; 1.15 for 3). In this latter equation, the relation $c = (r_H - r_R)$ is convenient for rationalizing other observations in Tables II and III. Thus, it may be inferred that in two series of am with a common R₁ (such as 5 and 6 or 1 and 3), the one bearing the "bigger" R substituent will show the more substantial $\Delta \delta_{AB}$ values; this result follows [from $c = (r_H - r_B)$] when the geometry around the N atom (and group,⁴ and this leads to the proposal that a "large" R₁ should correlate with a "small" $r_{\rm H}$.

Table **11.** Experimental and Calculated 'H **NMRa** Chemical Shift Differences (A~AB) between Methylene Protons in Difluorooxyboranes 5.6.7.9, and **10**

			methylene (benzylic) protons		$\Delta \delta_{AB}$ $(H_A - H_B)$			other (multiplicity, no. of protons,		
compd	X.	r_Xb H_A^c		H_B^c	exptl calcd ^d		H_C	assignment)		
őЬ 5c	CH.	2.0	5.0 5.33, 5.12(5.23)	5.0 4.76, 4.53(4.65)	$\mathbf{0}$ 0.58		5.36 5.21	$6.7-7.8$ (m, 14 H, Ar H) 1.96 (s, 3 H, ArCH ₃), 6.77 (dd, 1 H, $6'$ -H), 7.0-7.7 (m, 13 H, Ar H)		
5d	C, H,		2.15^e 5.45, 5.22 (5.34) 4.67, 4.46 (4.57) 0.77					5.22 1.07 (t, 3 H, $J = 7.5$ Hz, ArCH,- $CH3$), 2.37 (q, 2 H, $J = 7.5$ Hz, $ArCH2CH3$, 6.72 (dd, 1 H, 6'-H), $7.0 - 7.7$ (m, 13 H, Ar H)		
5е	CH.O		$1.52f$ 5.49, 5.26 (5.38) 4.59, 4.36 (4.48) 0.90 0.90 5.33					3.68 (s, 3 H, OCH ₃), 6.7-7.7 (m, 14 H, Ar H)		
5f	F	1.35						$5.46, 5.22$ (5.34) $4.72, 4.50$ (4.61) 0.73 0.75 5.36 6.7-7.7 (m, 14 H, Ar H)		
5g	Cl	1.80		$5.71, 5.48(5.60)$ $4.50, 4.26(4.38)$	1.22			1.15 5.22 6.75 (dd, 1 H, 6'-H), 6.9-7.7 (m, 13 H, Ar H)		
5 _h	Br	1.95						5.80, 5.55 (5.68) 4.45, 4.21 (4.33) 1.35 1.28 5.22 6.75 (m, 1 H, 6'-H), 7.0-7.9 (m, 13 $H.$ Ar H)		
5i	C _k H _k	2.45 ^e		$5.42, 5.18(5.30)$ $3.70, 3.46(3.58)$ 1.72 1.73 5.60				6.71 (dd, 1 H, 6'-H), 6.9–7.8 (m, 18) H , Ar H)		
9	C _A H _A							1.95^e 5.80, 5.56 (5.68) 4.61, 4.37 (4.49) 1.19 1.28 5.15 6.90 (m, 1 H, 6'-H), 7.2-8 (m, 16 H, ArH		

 a Approximately 10% solutions in CDCl₃. Data are reported as δ in parts per million from Me₄Si; spectra determined at about 36 "C. Press, Cleveland, OH, 1976-1977). "radius" (A). Am. Chem. **SOC.,** 99, 4577 (1977)] seems more appropriate than 1.4 *A.b* nals of the halves of the AB spectrum (i.e., first and seventh lines) in parts per million. Measured distance between first and fifth lines (in parts per million). ' van der Waals radius (A) of X (''Handbook of Chemistry and Physics'', 57th ed., R. C. Weast, Ed., CRC
1, OH, 1976-1977). C Downfield signal; upfield signal (center). ^d 0.887r_X – 0.446; r² = 0.966. ^e Assi Measured distance between corresponding sig-
er million. $h(0.935r_X - 1.16; r^2 = 0.936)$.

Table **111.** Experimental and Calculated **'H** NMR4 Chemical Shift Difference ($\Delta \delta_{\rm AB}$) between Methylene Protons in Amides **1-3**

		amide								
					2	3				
X	r_Xb		exptl calcd ^c exptl calcd ^d			exptl	calcd ^e			
CH,	2.0	1.24^{f}	1.24	0.85 ^f	0.87	0.84 ^g	0.83			
C_2H_6		2.15 1.37 ^f 1.36				0.98^{f}	1.00			
F	1.35						0.08			
Cl	1.80			0.67 ^h	0.66		0.60			
Br	1.95					$0.77h^{i}$	0.77			
	2.15					1.02 ^h	1.00			
$C_{\star}H_{\star}$	2.45		1.60^{f} 1.60 1.30^{f}		1.30	1.37^{f}	1.35			
$C_{A}H_{A}$	1.95					0.80 ^T	0.77			

Data are reported as δ in parts per million from Me₄Si. 0.993. *f* Determined in CDCl₃ at about 43° C.¹ $^{\circ}$ Determined in $\rm CDCl_{\rm s}$ at 40 $^{\circ}$ C.⁴ . about 43° C.² $\mathbf{Y} = 2^{\prime}$ -bromo-4'-methyl. *As* for Table **11.** 0.974rx - 1.09; r2 = 0.994. **e** 1.16rx - 1.49; *rz* ⁼ Determined in CDCl, at $(0.795r_X - 0.346; r^2 = 0.999.$

cumstances, whereas their conformational energies are $similar.¹⁴$ This research provides a consistent framework for accommodating a host of previously apparently unrelated measurements and is being continued.

Experimental Section

Melting points were determined with a Kofler hot-stage apparatus and are uncorrected. 'H NMR spectra were obtained (in CDCl₃) at 60 MHz, using a Hitachi Perkin-Elmer R-20 instrument, and chemical shifts (δ) are measured from internal tetramethylsilane **as** reference. The proton resonances of all compounds were integrated for confirmation of structure *(8,* singlet; d, doublet; t, triplet; m, multiplet).

N-Substituted Difluorooxyboranes. The requisite parent difluorooxyboranes, 8, were prepared from the appropriate benzoylacetanilide and boron trifluoride.¹⁵ The N-alkylation of 8 was carried out in dimethylformamide, using sodium hydride and either benzyl bromide, ethyl bromide, or methyl iodide (methyl tosylate) as appropriate,¹⁶ and afforded the corresponding $5, 6$,

(15) B. Schiffman and B. Staskun, Tetrahedron, *Suppl.,* **No.** 7, 115 (1966).

7, 9, and **10,** respectively, in good yields. The crude reaction products, isolated after trituration with ethanol,¹⁶ were sufficiently pure (melting point) for most purposes (including 'H NMR determination). Samples were obtained for elemental analysis by crystallization from chloroform-ethanol. New N-substituted difluorooxyboranes 5,6,7,9, and **10** together with relevant details are listed in Table I. The mass spectra (measured (70 eV) on a Varian CH-5 spectrometer) which substantiated the respective structures featured the rearrangement ion, $Ar\dot{N}^{+}(R)BF_{2}$, thought to originate from a six-membered transition state in which the N and B atoms are suitably aligned or even coordinated.¹⁷ It now seems more likely that the $ArN^+(R)BF_2$ (and other species¹⁷) arise after intervention of acyclic difluorooxyborane intermediates.18

Registry **No. IC,** 7128-76-9; Id, 7128-77-0; li, 6930-93-4; **2c,** 6932-98-5; 2g, 13936-57-7; 2i, 7215-53-4; 3c, 6932-92-9; 3d, 7111-32-2; 3f, 76359-25 **5;** 3g, 76359-26-7; 3i, 7097-82-7; 3 **(X** = I), 13936-59-9; 3 (X = C_4H_4), 6930-96-7; 3 (X = 2-Br, 4-Me), 13936-58-8; 5b, 76377-14-5; **5c,** 76391-54-3; 5d, 76377-15-6; 5e, 76377-16-7; Sf, 76377-17-8; 5g, 76377-18-9; 5h, 76377-19-0; 5i, 76377-20-3; 6c, 76377-21-4; 6d, 76377-22-5; 6e, 76377-23-6; 6f, 76377-24-7; 6g, 76377-25-8; 6h, 76377-26-9; 64 76377-27-0; 6j, 76377-28-1; 7g, 76377-29-2; 7i, 76377-30-5; 8b, 76377-31-6; 8c, 76377-32-7; 8d, 76377-33-8; 8e, 76377-32-7; 8f, 76377-34-9; 8g, 76377-35-0; 8h, 76377-36-1; **8i,** 76377-37-2; 8j, 76377-38-3; 9, 76377-39-4; 10, 76391- 55-4; boron trifluoride, 7637-07-2; **3'-chlorobenzoylacetanilide,** 962- 06-1; **2'-methylbenzoylacetanilide,** 71599-78-5; 2'-ethylbenzoylacetanilide, 76359-27-8; **2'-methoxybenzoylacetanilide,** 92-16-0; 2' **fluorobenzoylacetanilide,** 349-25-7; 2'-chloroacetanilide, 7342-28-1; 2'-bromoacetanilide, 41084-99-5; 2'-phenylacetanilide, 76359-28-9; **4'-bromo-2-chloro-3',5'-dimethylacetanilide,** 76359-29-0.

~~ ~~~~ ~ (16) B. **Staskun,** *J.* Org. Chem., **44,** 875 (1979). (17) S. H. Eggers **and** B. Staekun, *J.* S. *Afr.* Chem. *Inst.,* 21,18 (1966). (la) The feasibility of the equilibrium below is supported from **'H** NMR observations with certain 6 in dimethyl- d_6 sulfoxide solution (N. J. Coville and B. Staskun, unpublished results).

Structural Effects in Solvolytic Reactions. 35. Carbon-13 Nuclear Magnetic Resonance Studies of Carbocations. Effect of Increasing Electron Demand on the Carbon-13 Nuclear Magnetic Resonance Shifts in 2-Aryl-2-butyl and 4-Aryl-4-heptyl Carbocations. Correlation of the Data by a New Set of Substituent Constants, σ^{C^+}

Herbert C. Brown,* Mariappan Periasamy,¹ and Kwang-Ting Liu²

Richard B. Wetherill Laboratory, Purdue University, West Lafayette, Indiana *47907*

Received October 15. 1980

The ¹³C NMR shifts of a series of meta- and para-substituted 2-phenyl-2-butyl and 4-phenyl-4-heptyl carbocations were measured in $SbF_5/FSO_3H/SO_2CIF$. The plots of the chemical shifts of the cationic carbon, $\Delta\delta^{C^+}$, in the various substituted derivatives against the values of substituent constants, σ and σ^+ , reveal only relatively poor correlations. However, excellent linear correlations are realized in the plots of $\Delta\delta^{C^+}$ against the new σ^{C^+} values proposed for these systems. The 2-aryl-2-butyl system yields a ρ^{C^+} value of -17.78 with a correlation coefficient $r = 0.9998$. The 4-aryl-4-heptyl system gives a ρ^{C^+} value of -14.57 with $r = 0.999$. Th

During a systematic investigation of electrophilic aromatic substitution reactions, it was recognized that the original Hammett σ constants, derived from the ionization of substituted benzoic acids, required modification **to** allow

⁽¹⁴⁾ J. A. Hirsch in "Topics in Stereochemistry", **Vol.** 1, Interscience Publishers, New York, 1967, p 199.